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ABSTRACT

This thesis addressed questions about the Fe cycle by measuring detailed profiles
and transects of Fe species in the ocean and also by exploring the use of a new tracer of
Fe, Fe isotopic fractionation. In the subtropical and tropical Atlantic Ocean, transects and
profiles are presented for dissolved Fe (<0.4 g.m), soluble Fe (<0.02 Rm), and colloidal
Fe (0.02 to 0.4 [tm). Surface dissolved Fe distributions reflect atmospheric deposition
trends with colloidal Fe following dust deposition more strongly than the soluble fraction
of Fe. Observed surface maxima and shallow minima in dissolved Fe were always due to
variations in the colloidal Fe fraction. Deep-water dissolved and colloidal Fe
concentrations vary with water mass source, age, and transport path. Elevated dissolved
Fe concentrations (>1 nmol/kg) were associated with an oxygen minimum zone in the
tropical Atlantic at 10°N, 45°W.

Fractionation of iron isotopes could be an effective tool to investigate the
geochemistry of iron. Trace metal clean plankton tows, river samples, aerosol leachates,
and porewater samples were measured for their iron isotopic composition using a GV
Instruments IsoProbe Multi-collector ICPMS. The Fe isotopic composition of plankton
tow samples varied by over 496 (in 'Fe/ 54Fe). North Pacific plankton tow samples had
isotopically lighter Fe isotopic compositions than samples from the Atlantic. The overall
isotopic range observed in the Amazon River system was 1.5%o, with variability observed
for different types of tributaries. The main channel river dissolved Fe samples and
suspended loads were isotopically similar (- -0.2 to -0.459oo relative to igneous rocks).
The isotopically heaviest sample collected was dissolved Fe from an organic rich
tributary, the Negro River (+0. 1696). In contrast, the suspended load from the Negro
River was isotopically light (-1%o). The isotopically lightest sample from the Amazon
region was shelf porewater (- 1.4116). In river water-seawater mixing experiments, the Fe
isotopic signal of dissolved Fe of river water was modified by flocculation of isotopically
heavy Fe. The observed range in the Fe isotopic composition of the natural samples
including biological and aqueous samples demonstrates that significant and useful
fractionation is associated with Fe biogeochemistry in the environment.
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THESIS SUMMARY

This study addressed questions about the Fe cycle by measuring detailed profiles
and transects of Fe in the ocean and also by exploring the use of a new tracer of Fe, stable
Fe isotopic fractionation. Iron distribution, speciation, and dissolution were investigated
on three cruises in the sub-tropical and tropical Atlantic Ocean in regions where dust
deposition varies by three orders of magnitude. Detailed profiles and transects were
collected and analyzed for "dissolved" Fe (DFe, 0.4 Rtm filtered) and "soluble" Fe (SFe,
0.02 tim filtered). The difference between DFe and SFe is inferred to be the "colloidal"
fraction of Fe (CFe). Iron concentrations were measured by a new isotope dilution multi-
collector inductively coupled plasma mass spectrometry (MC-ICPMS) method, which
allows manganese and chromium concentrations to be measured simultaneously. Iron
and manganese comparisons are useful because the source for manganese is aeolian
deposition and it is removed by scavenging like iron, but the DMn profile (0.4 [tm
filtered) is not indicative of a nutrient-type element. In the subtropical and tropical
Atlantic Ocean, surface DFe and DMn concentrations reflect dust deposition trends. CFe
followed dust deposition trends more strongly than the SFe, and observed maxima in DFe
profiles were always due to maxima in the CFe fraction. Where dust deposition was low
(e.g., the South Atlantic), CFe concentrations were also low and sometimes negligible in
surface waters.

SFe and CFe profiles had distinct profiles both in the upper water column and in
deeper waters. SFe profiles were always depleted in surface waters (and in the deep
pycnocline of the gyre sites) and gradually increased to relatively uniform concentrations
in the deep-water (. 0.3 to 0.4 nmol/kg). CFe profiles showed significantly more
variability. At sites with surface maxima, CFe always decreased to negligible levels at 30
to 80 m, remained low or negligible throughout the pycnocline, and increased with depth
below the pycnocline. The low DFe and CFe in the deep pycnocline of the gyre sites
may be due to ventilation with water from higher latitudes with lower dust input (and
thus low CFe). We have not established the mechanisms that cause the shallow minima
in CFe, but they may be due to (1) atmospheric deposition and downward mixing with
low-CFe water and/or (2) a Fe sink within the euphotic zone such as scavenging or
biological utilization (indirect or direct). At a site located on the edge of the equatorial
system (10°N) with a very shallow pycnocline, DFe increased rapidly within the shallow
pycnocline to concentrations >1 nmol/kg associated with an oxygen minimum zone
(OMZ) at depths of 130 to 1100 m. The increased DFe in the OMZ is likely due to re-
mineralization of organic matter under the high-productivity eastern equatorial upwelling
region and then lateral westward spreading. Using estimates of the atmospheric flux of
DFe (Vink and Measures, 2001; Chen and Siefert, 2004), surface residence times for DFe
on the order of 1 to 5 months were calculated in the Atlantic.
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Deep-water DFe and CFe concentrations show variability with water mass and
with the source, age, and path of the water masses. DFe concentrations in North Atlantic
Deep Water (NADW) are higher than DFe in Antarctic derived water masses. NADW
also has a higher fraction of CFe (decreasing from 40% at 100N to 30% at 24.5°S) from
north to south). DFe concentrations in the Antarctic water masses are low
(- 0.4 nmol/kg) with lower fractions of CFe (20%), which may reflect their low-dust and
low DFe source region. SFe in the deep-water of the Atlantic is relatively uniform,
therefore most of the variability observed is due to CFe. A deep-water scavenging
residence time for DFe of 270 _ 140 years was estimated from the DFe decrease in
NADW from the North Atlantic to South Atlantic assuming a transit time of 56 years. If
one assumes there is no exchange from the SFe pool to the CFe pool, then a scavenging
residence time for CFe can also be estimated (140 ± 100 years).

Estimates of aerosol solubility have important consequences for models of the Fe
cycle because dust solubility determines the estimated flux of DFe to the surface ocean.
Currently it is being treated as a constant (usually 1 or 10%) because of the limited and
variable estimates available. Aerosol dissolution experiments were performed with
freshly collected remote Pacific aerosols and natural seawater. The seawater was
changed every 24 hours to avoid saturation of the seawater and to minimize Fe loss to the
bottle walls. Iron was continually released from the aerosols for up to four days. Based
on estimates of TFe, the total amount of DFe released was 37% for the low-TFe
experiment and 6.6% for the high-TFe experiment. These estimates are likely minimum
estimates because Fe was still being released at the end of both experiments.

Fractionation of iron isotopes could be an effective tool to investigate and
quantify the marine geochemistry of iron. Initial studies of stable iron isotopes show
measurable fractionation in both field samples and laboratory studies spanning 4%9
(656Fe, see Section 1.2 for definition). Trace metal clean plankton tows, river samples,
aerosol leachates, and porewater samples were measured for their iron isotopic
composition using a GV Instruments IsoProbe Multi-collector ICPMS. This system uses
a hexapole collision cell to reduce molecular interferences and improve transmission.
Measurements using standard-sample bracketing give an external precision of ± 0.24%o
(2a standard deviation). The uncertainty in the average of 8 56Fe for samples measured
more than once was typically less than t 0.20%o (2a standard error).

The 656Fe of plankton tow samples varied by over 4%/o (-3.87%9 to +0.3696) and
an aerosol leachate from the North Atlantic is indistinguishable from igneous rocks. The
range in the "56Fe of the plankton tow samples demonstrates that significant and
potentially useful fractionation is associated with cycling of Fe in the upper ocean. The
Fe in the plankton tow samples in this study is a mixture of intracellular and extracellular
Fe adsorbed to the plankton. For plankton samples with Fe:C ratios greater than
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70 iimol/mol, the 856Fe values were more variable and were isotopically heavier with
increasing Fe:C ratios suggesting that extracellular Fe is isotopically heavier than the
intracellular Fe. Plankton samples from the Atlantic scatter around a hypothetical mixing
line between a planktonic intracellular 656Fe of --1.5%o and an extracellular component
of Fe that is isotopically similar to igneous rocks (0%o). The North Pacific plankton tow
samples were isotopically lighter in &56Fe than the Atlantic plankton samples.

A plankton tow collected in a low salinity Amazon River plume in the open ocean
had a 656Fe value of -0.34%c and a Fe:C ratio of - 600 11mol/mol. It was inferred from
the high Fe:C ratio that most of the Fe collected in the plankton tow was extracellular Fe
and that the 8'Fe might reflect the composition of particles and Fe attached to the surface
of the plankton. In order to investigate the source of Fe to the Amazon plume water,
samples were collected from the Amazon River and region including filtered river water,
suspended sediment, and a shelf porewater. River water-seawater mixing experiments
were also performed to assess whether Fe flocculation in estuaries affects isotopic
composition of the dissolved flux to the ocean. The overall isotopic variation observed in
the Amazon River system was 1.5%o. The main channel river samples and suspended
loads were isotopically similar (- -0.2 to -0.45%o). The most depleted sample was the
Amazon shelf porewater (-4.4%o). The isotopically heaviest sample collected was
dissolved Fe from an organic rich tributary, the Negro River, in the Amazon River system
(+0. 16%o). Although the Negro River dissolved phase was isotopically heavy relative to
igneous rock, its suspended sediment Fe was very isotopically light (-1%o). The signature
of the Negro dissolved load was not observed downstream near the mouth (- -0.3%7).
The variability in Fe isotopic composition from different types of river tributaries
draining distinct weathering terrains suggests that Fe isotopes may reflect the degree or
type of weathering and overall balance of Fe in a drainage basin.

Based on river water-seawater mixing experiments, the 856Fe signal of the
Amazon River may be modified in the estuary when >90 % of the Fe flocculates upon
mixing with ocean water. The flocculent was isotopically heavy compared with the
riverine dissolved Fe, which would lead to the dissolved Fe that is transported to the
ocean being isotopically lighter than the river endmember (- -1%o or lighter). However,
neither the proposed isotopically light Fe from the modified riverine input nor from shelf
porewater matches the Amazon plume plankton tow 656Fe. If the plankton tow b56Fe is
similar to the plume water W6Fe, then processes in the euphotic zone (biological
cycling/export, scavenging) may modify the proposed light 656Fe (- 1%o) of the Amazon
River input by preferentially removing isotopically light Fe. The above studies of Fe
isotope fractionation demonstrate that aqueous and biological samples in the environment
have a measurable range in 8-6Fe values, and that these signals might be useful in
tracking Fe pathways.
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Chapter 1

Introduction

Iron is the fourth most abundant element in the Earth's crust and an essential

nutrient for all living organisms. For example, Fe is necessary for chlorophyll production

and nitrogen assimilation (RUETER and ADES, 1987). Despite its abundance in the

environment, Fe is found at very low concentrations in the ocean due to the low solubility

of Fe under oxidizing conditions and is a limiting nutrient for primary productivity in

many of regions of the ocean (MARTIN and FITZWATER, 1988; MARTIN, 1990; MARTIN et

al., 1990; MARTIN et al., 1994; COALE et al., 1996; HUTCHINS and BRULAND, 1998; BOYD

et al., 2000; BOYD et al., 2004; COALE et al., 2004). This observation has lead to

proposals that changes in Fe flux to the ocean may play a role in climate change by

influencing primary production (and hence the carbon cycle) of the ocean (MARTIN,

1990; KUMAR et al., 1995; FALKOWSKI, 1998). In order to incorporate iron into models

of climate change, it is necessary to understand and quantify the processes that control

iron distributions in the ocean. There have been many attempts to model Fe in the ocean

and to include Fe in models of atmospheric CO2 and climate change (LEFEVRE and

WATSON, 1999; MAHOWALD et al., 1999; ARCHER and JOHNSON, 2000; FUNG et al.,

2000; SIGMAN and BOYLE, 2000; GAO et al., 2001; GREGG et al., 2003; PAREKH et al.,

2004; PAREKH et al., submitted). However, it is difficult to constrain the biogeochemical

models for Fe because of the paucity of data throughout the ocean. New water column

profiles of Fe, especially in areas not previously sampled, and new process studies of Fe

biogeochemistry are necessary to improve and challenge our current understanding of Fe

in the ocean.

1.1. IRON IN THE OCEAN

Iron limitation has been demonstrated in high nutrient, low chlorophyll (HNLC)

regions by iron enrichment experiments in the Southern Ocean, equatorial Pacific, sub-
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artic Pacific, and seasonally in some coastal regions of the ocean (MARTIN and

FITZWATER, 1988; MARTIN, 1990; MARTIN et al., 1990; MARTIN et al., 1994; COALE et

al., 1996; HUTCHINS and BRULAND, 1998; BOYD et al., 2000; BOYD et al., 2004; COALE

et al., 2004). It is also hypothesized that iron could indirectly affect primary productivity

in the low nutrient, low chlorophyll (LNLC) regions of the subtropical gyres by limiting

N, fixing bacteria such as Trichodesmium spp, which bring new nitrate into the system

(LETELIER and KARL, 1996; MICHAELS et al., 1996; KARL et al., 1997; FALKOWSKI,

1998). Although the importance of iron in the ocean has been recognized for the past

decade or two, it is difficult to study because it is especially prone to contamination and

has complicated behavior in the ocean (reviews: JOHNSON et al., 1997; TURNER AND

HUNTER, 2001). Iron is known for its redox chemistry, photochemistry, organic

complexation, adsorption and desorption on particles, and uptake and cycling by

organisms. These factors are further complicated by the low solubility and association of

Fe with colloids in seawater (MILLERO, 1998; WU et al., 2001).

The main sources of Fe to the ocean are rivers, atmospheric deposition, re-

suspension of sediments, and hydrothermal vents. A schematic of the Fe cycle in the open

ocean is shown in Figure 1.1. Fe concentrations are highest near its sources, and

concentrations decrease rapidly with distance from sources due to the reactivity and

insolubility of Fe in seawater (Wu and LUTHER, 1996; JOHNSON et al., 1997). High

levels of Fe (-5 nmol/kg) are found in coastal areas where rivers, re-suspension of

sediments, and atmospheric deposition are the main contributors. However these high

levels are not observed in the open ocean (<1 nmol/kg). Fe concentrations decrease to

values of less than 2% of their coastal values 100 km from the California continental

margin (JOHNSON et al., 1997). Hydrothermal input of Fe is believed to be important

only near its sources (mostly in the deep ocean) because most of the Fe from

hydrothermal vents precipitates near the vents and ridge axis (DE BAAR and DE JONG,

2001). Because Fe from rivers and re-suspension of sediments generally does not

penetrate far into the ocean interior and hydrothermal Fe input is considered localized, it

is believed that the main input of Fe to the open ocean is atmospheric deposition (DUCE
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